How delay of a standard cell changes with drive strength

A standard cell (let us say a buffer) can be represented as shown in figure 1 below, where 
R = Channel resistance 
Cds = Drain-to-source capacitance (internal capacitance of cell)
Cload = Load capacitance


So, RC time constant can be represented as "R * (Cds + Cload)".

What happens on increasing the drive strength? In our post "what is meant by drive strength", we discussed that the drive strength of a standard cell increases when we increase the size of its transistors. So, basically, a cell with drive strength 2X will have twice of width as compared to the one with 1X drive strength.
And we know that
Channel resistance decreases with "W".
Drain-to-source capacitance increases with "W".
So,  upon increasing the drive strength, its internal capacitance will increase and channel resistance will reduce by same amount. The same is depicted in figure 2 below.


Time constant of "1X" buffer = R * (Cds + Cload)
 Time constant of "2X" buffer = R/2 * (2Cds + Cload) 
Now, let us talk of following scenarios:

Special case 1: Load capacitance is negligible.
In this scenario, we are left with only internal resistance and capacitance of the cell.

Time constant of "1X" buffer = R * Cds
Time constant of "2X" buffer = R * Cds
So, in this case, there should not be any impact of increasing the drive strength of standard cell on delay. So, in case there is negligible load, we should not upsize the standard cell. Doing so may instead increase the overall path delay as increased drive strength cell will present increased load to the previous stage cell, thereby increasing the delay of previous stage.

Special case 2: Load capacitance is very large as compared to internal capacitance.
In this scenario,
Time constant of "1X" buffer = R * Cload
Time constant of "2X" buffer = (R * Cload ) / 2 
So, second buffer will take approximately half the time to charge the load capacitance as compared to "1X" buffer.

So, we see that the the maximum possible benefit in delay by increasing the drive strength of standard cell is a reduction by a factor of two. In the worst case, we may not see any benefit at all.

We can also look at above equation by splitting cell delay into two components:
  1. Cell delay due to its own intrinsic capacitance: It does not scale by drive strength and is a constant value for one kind of standard cells.
  2. Cell delay due to external load capacitance: It is variable and decreases as we increase the drive strength of standard cell.

What is meant by drive strength of a standard cell

As we know that cell delay is a function of output load capacitance. The most simplistic equivalent circuit of a logic gate driving an output can be assumed as given in figure 1:


The purpose of logic gate is to propagate the effect of logic value available at its input to the output. Based upon whether '0' or '1' is to be propagated to the output. The corresponding is achieved by charging and discharging of the output load capacitance. Propagating a logic '0' will mean discharging of the load capacitance, and vice-versa. Drive strength of the logic gate is the its relative capability to charge/discharge the capacitance present at its output. Now, the time constant, and hence, delay of the circuit is "RC".
So, for a cell with higher drive strength, corresponding "R" is lesser than the one with lower drive strength. So that for same load capacitance "C", delay is lower for a cell with higher drive strength as it can charge the capacitance in lesser time.

How drive strength varies with size of a cell: Let us talk in terms of MOSFETs, although this is valid in terms of every device in general. We know that for a given technology standard cell library, length of all transistors is kept constant. For instance, 90 nm technology will have gate length of all transistors as ~90 nm. And channel resistance of the MOSFET is inversely proportional to "W/L" of the transistor. So, a simple way to decrease channel resistance is to increase "W" of the transistor. So, a transistor with more area will have lesser resistance. Or we can say that a logic gate with bigger transistors will have more drive strength.

What is unit drive strength: In a standard cell library, we generally see cells labelled as "1X", "2X" and so on. But what is meant by the number that you see with drive strength? In general, the lowest size logic gate is labelled as unit drive strength. The drive strength numbers of other cells are laelled relative to unit drive strength cell.

Read next: How delay of a cell changes with drive strength

Also read: