Depletion MOSFET and negative logic. Why it is not possible?


As we know, depletion MOSFET conducts current even with gate and source at same voltage level. To cut-off the current in depletion MOSFET, a voltage has to be applied at gate so as to exhaust the already existing carriers inside the channel. On the other hand, enhancement type MOSFET is cut-off when gate and source are at same voltage.
Taking the example of NMOS, for a depletion MOS, with source and gate at same level, there is still a channel available, hence, it conducts electric current. To bring it to cut-off, a negative potential is needed to be applied at gate (considering source at ‘X’ potential). Thus, with source at ‘X’ potential and gate at ‘X’ potential, drain attains the potential of source. Since, to cut-off the device, gate has to be given a voltage less than ‘X’, so we can say “when Gate is 1 and source is 1, then drain is 1”.  On the other hand, when source is 1 and gate is 0, drain attains ‘high impedance’. The reverse is true for PMOS.
Similarly, with the same logic, for an enhancement NMOS, “When Gate is 1 and source is 0, drain attains 0 potential”; similarly, “When Gate is 0 and source is 0, drain is 0”. The reverse is true for PMOS.

Source voltage
Gate voltage
Drain voltage for enhancement NMOS
Drain voltage for enhancement PMOS
Drain voltage for depletion NMOS
Drain voltage for depletion PMOS
0
0
Z
Z
0
0
0
1
0
Z
0
Z
1
0
Z
1
Z
1
1
1
Z
Z
1
1

Thus, we can say that it is due to the inherent properties of NMOS and PMOS that that they cannot be used to create negative level logic.

No comments:

Post a Comment

Thanks for your valuable inputs/feedbacks. :-)