4:1 mux as universal gate

A universal gate is a gate which can implement any given logic function. NAND and NOR gates are basically known as universal gates, since you can implement any logic function with these. A multiplexer, in a sense, can also be termed as a universal gate, since, you can realize any function by using a mux as a look-up-table structure. In this post, we discuss how we can utilize a 4:1 mux as a universal gate realizing 2-input gates.

Any two-input gate gives a definite value (either 0 or 1) for all the combinations of its inputs and can be represented in the form of truth table as shown in table below.


Here, A,B,C & D can be either "0" or "1" depending upon the functionality of the gate. For instance, for a 2-input AND gate, A = B = C = 0 and D = 1.

Utilizing a 4-input mux for implementing this generic 2-input gate, we can implement as shown below:


For instance, 2-input AND gate will be implemented as following:


This post was written as a response to a query from one of our readers. You can also post your query at post your query.

Duty cycle care-abouts for clock paths in reset assertion

In the post Asynchronous reset assertion timing scenarios, we discussed how we may need to time the assertion of asynchronous reset as well. In this post, we will talk about how important it is to talk about the duty cycle aspect as well. We will use the same example as we did in our previous post to help make a better connection.

In the figure below (discussed in Asynchronous reset assertion timing scenarios), Q0 goes from 0 ->1 and 1 -> 0 in the same cycle, thereby providing a very diminished high pulse, or very diminished low pulse to BIT_1 flip-flop depending upon the delay in reset path of BIT_0 flip-flop. This can result in violation of minimum pulse width requirement of BIT_1. We will discuss this in some detail in this post.

Let us talk only about clock edge number 4. Q0 goes 1 and BIT_1 receives it as positive edge of clock, thereby changing state too. The delay till BIT_1 receiving positive edge of clock is given as

POS_CK_AT_BIT_1 = (Latency of BIT_0) + (CLK->Q of BIT_0) + (BIT_0/Q -> BIT_1/CK)

Now, both Q0 and Q1 go 1, thereby causing the output of NAND gate going "0", which asserts the reset of both BIT_0 and BIT_1. BIT_1 now receives negative edge of clock, whose delay is

NEG_CK_AT_BIT_1 = (Latency of BIT_0) + (CLK->Q of BIT_0) + NAND_DELAY + (R -> Q of BIT_0) +   (BIT_0/Q -> BIT_1/CK)

The width of high pulse that the flip-flop receives is equal to the difference between above two values:
HIGH_PULSE_WIDTH_AT_BIT_1 = NAND_DELAY + (R -> Q of BIT_0)

And low pulse is equal to 
LOW_PULSE_WIDTH_AT_BIT_1 = CLK_PERIOD - HIGH_PULSE_WIDTH_AT_BIT_1

Now, depending upon the combinational delays mentioned as well as CLK_PERIOD, BIT_1 may receive a pulse (either high or low) with width less than what is permissible for its proper functionality. Thus, there will be a pulse width violation.

Looking at the equations for high and low pulse widths, it seems more probable to have high pulse width violating for BIT_1, unless either clock period is very less or buffering is there in reset path of BIT_0. We will need to increase buffering to reset pin of BIT_0 to increase width of high pulse and vice-versa.

The discussion we just had is applicable to any design in particular with reset controlling a signal driving another flip-flop's CK pin. However, one may argue following about this particular circuit:

This particular circuit is resistant to high pulse width violation, but may have low pulse width violations.

Can you argue in favor/against this statement? What is the reason for one making this statement. (Hint: Answer lies in the sequence of events causing CK to BIT_1 to go high and then go low).

Also read: