How to build an XOR gate using NAND gates

We can build a 2-input XOR gate using 5 NAND gates. Sound interesting, isn't it? Let us see how.

As we know, the logical equation of a 2-input XOR gate is given as below:
                      Y = A (xor) B = (A' B    +    A B')
Let us take an approach where we consider A and A' as different variables for now (optimizations related to this, if any, will consider later). Thus, the logic equation, now, becomes:
                       Y = (CB    +    A D)           -----   (i)
     where
                      C = A'     and      D = B'
De-Morgan's law states that

                                m + n = (m'n')'

Taking this into account,
                     Y = ((CB)'(AD)')' = ((A' B)'  (A B')')'
Thus, Y is equal to ((A' nand B) nand (A nand B')). No further optimizations to the logic seem possible to this logic. Figure 1 below shows the implementation of XOR gate using 2-input NAND gates.
A 2-input XOR gate can be implemented as shown in figure.
Figure 1: 2-input XOR gate implementation using 2-input NAND gate
Thus, we have seen an XOR gate can be implemented by putting NAND gates in cascade. Can you think of a better way of implementing XOR gate using NAND gates?


Also read:

1 comment:

Thanks for your valuable inputs/feedbacks. :-)