2-input AND gate using 2:1 mux

2-input AND gate implementation using 2:1 mux: Figure 1 below shows the truth table of a 2-input AND gate. If we observe carefully, OUT equals '0' when A is '0'. And OUT follows B when A is '1'. So, if we connect A to the select pin of a 2:1 mux, AND gate will be implemented if we connect D0 to '0' and D1 to 'B'.

A 2-input AND gate has output '0' when either or both inputs is '0'. And output is '1' when both the inputs are '1'.
Figure 1: Truth table of AND gate
Figure 2 below shows the implementation of 2-input AND gate using a 2:1 multiplexer.

An AND gate can be implemented using a 2-input multiplexer by connected D0 input to '0' and D1 to B, SEL being connected to A. AND gate using mux, AND gate using 2x1 mux, 2-input AND gate using mux
Figure 2: Implementation of AND gate using a 2:1 mux

Also read:

2-input NAND gate using 2:1 mux

2-input NAND gate using 2:1 mux: Figure 3 below shows the truth table of a 2-input NAND gate. If we observe carefully, OUT equals '1' when A is '0'. Similarly, when A is '1', OUT is B'. So, if we connect SEL pin of mux to A, D0 pin of mux to '1' and D1 to B', then it will act as a NAND gate.

In a 2-input NAND gate, output is '0' when both inputs are '1', otherwise output is '1'
Figure 3: Truth table of 2-input NAND gate

Figure 4 below shows the implementation of a 2-input NAND gate using 2:1 mux.


A NAND gate can be implemented using a 2-input multiplexer, if we connect the select pin of the multiplexer to A, D0 to VDD and D1 to B' inputs. NAND gate using mux, NAND gate using 2x1 mux
Figure 4: Implementation of 2-input NAND gate using 2:1 mux

Also read: